Top.Mail.Ru
Jump to content
  • Sign Up
  • Language

Основные определения


Норман Старший

3,271 views

Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой формеОбширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

 

Два типа обучения:

Обучение по прецедентам, или индуктивное обучение, основано на выявлении эмпирических закономерностей в данных.

Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний.

Обучение на примерах (Обучение по прецедентам) (англ. Learning from Examples) — вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.

База знаний (БЗ; англ. knowledge base, KB) — база данных, содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. В самообучающихся системах база знаний также содержит информацию, являющуюся результатом решения предыдущих задач.

Основные стандартные типы задач:

Обучение с учителем (supervised learning) — наиболее распространённый случай. Каждый прецедент представляет собой пару «объект, ответ». Требуется найти функциональную зависимость ответов от описаний объектов и построить , принимающий на входе описание объекта и выдающий на выходе ответ. Функционал качества обычно определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.

Обучение без учителя (unsupervised learning). В этом случае ответы не задаются, и требуется искать зависимости между объектами.

  • Частичное обучение (semi-supervised learning) занимает промежуточное положение между обучением с учителем и без учителя. Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов. Пример прикладной задачи — автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам.
  • Трансдуктивное обучение (transductive learning). Дана конечная обучающая выборка прецедентов. Требуется по этим частным данным сделать предсказания отностительно других частных данных — тестовой выборки. В отличие от стандартной постановки, здесь не требуется выявлять общую закономерность, поскольку известно, что новых тестовых прецедентов не будет. С другой стороны, появляется возможность улучшить качество предсказаний за счёт анализа всей тестовой выборки целиком, например, путём её кластеризации. Во многих приложениях трансдуктивное обучение практически не отличается от частичного обучения.
  • Обучение с подкреплением (reinforcement learning). Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды). Как и в задачах прогнозирования, здесь существенную роль играет фактор времени. Примеры прикладных задач: формирование инвестиционных стратегий, автоматическое управление технологическими процессами, самообучение роботов, и т.д.
  • Динамическое обучение (online learning) может быть как обучением с учителем, так и без учителя. Специфика в том, что прецеденты поступают потоком. Требуется немедленно принимать решение по каждому прецеденту и одновременно доучивать модель зависимости с учётом новых прецедентов. Как и в задачах прогнозирования, здесь существенную роль играет фактор времени.
  • Активное обучение (active learning) отличается тем, что обучаемый имеет возможность самостоятельно назначать следующий прецедент, который станет известен. 
  • Метаобучение (meta-learning или learning-to-learn) отличается тем, что прецедентами являются ранее решённые задачи обучения. Требуется определить, какие из используемых в них эвристик работают более эффективно. Конечная цель — обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.
    • Многозадачное обучение (multi-task learning). Набор взаимосвязанных или схожих задач обучения решается одновременно, с помощью различных алгоритмов обучения, имеющих схожее внутренне представление. Информация о сходстве задач между собой позволяет более эффективно совершенствовать алгоритм обучения и повышать качество решения основной задачи.
    • Индуктивный перенос (inductive transfer). Опыт решения отдельных частных задач обучения по прецедентам переносится на решение последующих частных задач обучения. Для формализации и сохранения этого опыта применяются реляционные или иерархические структуры представления знаний.
    • Иногда к метаобучению ошибочно относят построение алгоритмических композиций, в частности, бустинг; однако в композициях несколько алгоритмов решают одну и ту же задачу, тогда как метаобучение предполагает, что решается много разных задач.

1499606304_0_0_5400_3038_600x0_80_0_0_e14fef8028b736f2a317f84bd04206f9.jpg

 

0 Comments


Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...